
Feasibility of Using Formal Methods in the
Development of e-Voting Systems
Anthony Hall
Praxis Critical Systems
anthony.hall@praxis-cs.co.uk
19th November 2003

Management Summary
We strongly agree with you that sensible deployment of formal methods would
greatly increase the confidence in eVoting software. At the very least there should be
a formal specification of the system and static analysis of the code to show that there
are no undesirable flows of information. The formal specification would support a
rigorous testing programme.
Formal Methods are a practical approach to developing systems of any size and
complexity. We have built systems as big as the voting machine and IES, and far
more complex, using formal methods.
The practical use of formal methods depends on making a sensible choice of what
activities should be carried out formally and integrating these activities into the
normal software lifecycle.

What should be done formally?
“Formal Methods” covers a wide range of activities. Not all of these are necessary or
cost-effective on every project (contrary to the purist opinions expressed by some
academics). Any or all of the following may be useful. The items marked * can be
done automatically. Items marked (*) can be done automatically in part, but may need
human intervention.
1) Formalising the requirements. In secure systems, for example, there is the concept

of a “Formal Security Policy Model” which captures exactly what security
properties the system should have. In the context of a voting system it would
capture requirements like “the vote cannot be removed or altered once it has been
recorded”.

2) Formalising the system specification.
a) This is typically done by giving an abstract model of the system state and an

abstract model of the operations of the system in terms of their inputs, outputs,
and effect on the state.

b) Sometimes it is also useful to formalise the concurrent behaviour. This is
typically done by specifying in a process algebra like CCS or CSP how
different behaviours of the system (and its environment) can occur
concurrently.

3) Formalising the design. This typically means writing specifications of the modules
within the system. Again, it may also involve describing their interactions in
process algebras.

4) Developing formally annotated code. Each operation in the code may have pre
and post-conditions attached to it.

5) Defining the required flow relations on the code. In SPARK, for example, the
information flow properties of the code are specified and checked as part of the
detailed design process, preferably before the code itself is written.

6) Writing down the refinement relation between the formal design and the formal
specification

7) *Generating proof obligations to show the code is free from run time errors.
8) (*)Proving that the system specification is satisfactory – for example, that it is

consistent and that all operations preserve the state invariant.
9) (*)Proving or model checking that the system specification satisfies the formal

requirements.
10) (*)Proving or model checking that the refinement relation is satisfied
11) (*)Proving that the pre and post conditions in the code satisfy the design
12) (*)Discharging the code proof obligations.
13) *Showing that the code satisfies the information flow conditions in 5)
14) (*)Deriving test conditions from the formal specification and design.
In our experience, the most cost-effective step is usually step 2, formalising the
system specification. This specification is the pivotal point of the whole development
– everything else really depends on it.
In addition, any automatic steps are worthwhile. For example, static analysis of the
code is essentially free and is a good measure of the integrity of your module design.
The value of formalising the requirements depends on whether they are at all obscure
and whether there is perceived to be any difficulty proving whether they are met or
not. It would be interesting to see how important this might be in the eVoting context.
Formalising the design is useful if there is a complex relationship between the design
and the specification, for example if a black box specification is implemented on a
distributed or highly parallelised system. Otherwise, it may be perfectly feasible to go
straight from a formal specification plus (informal) module architecture to well
structured, traceable code.
Pre and post conditions in the code itself tend to be used at the highest levels of
criticality. I don’t know whether they would give significant benefits in an e-voting
system. It is important to realise, though, that this is not an all or nothing choice. It
may well be sensible to put pre and post conditions on particularly critical or difficult
pieces of code, forming only a small percentage of the whole.
The cost-effectiveness of the various kinds of proof and analysis is again something
that is flexible. We have done major projects in which there has been no proof at all,
and others in which we have done significant proofs at both the specification and code
level. In the latter case we have found that proof is an effective and efficient method
of finding defects.

Practical Experience
Electronic voting is well within the scope of good industrial practice in formal
methods. I understand that the voting machine contains about 25,000 lines of code
and the Integrated Election Software about 200,000 lines. We have developed safety
critical systems of about the size of the voting machine using the full rigour of
DefStan 00-55, including extensive proofs [1]. We have developed an air traffic
information system [2] of about 200,000 lines of code using formal specification and
formal design, with almost no proof. We have developed a highly secure system of
about 100,000 lines to the standards of ITSEC E6 with a formal security policy
model, a formal specification, selective formal design and static analysis of the code
[3,4]. It is noteworthy that, like the IES, this system was based on a COTS database
product –yet it meets extremely stringent security requirements.

References
1) "Is Proof More Cost Effective Than Testing?" (PDF — 564Kb)

Steve King, Jonathan Hammond, Rod Chapman and Andy Pryor,
IEEE Transactions on Software Engineering, Volume 26 Number 8.

2) Using Formal Methods to Develop an ATC Information System, Anthony Hall,
IEEE Software, March 1996, pp 66-76

3) "Correctness By Construction: Developing a Commercial Secure System" (PDF
174kb)
Anthony Hall and Roderick Chapman, IEEE Software, Jan/Feb 2002, pp18-25

4) Correctness By Construction: Integrating Formality into a Commercial
Development Process, Anthony Hall, Proceedings of FME '02, pp 224-233.

http://www.sparkada.com/downloads/sholis.pdf
http://www.sparkada.com/downloads/ieeesw.pdf
http://www.sparkada.com/downloads/ieeesw.pdf

	Feasibility of Using Formal Methods in the Development of e-Voting Systems
	Management Summary
	What should be done formally?
	Practical Experience
	References

